Brownian motion in dynamically disordered media.

نویسندگان

  • James B Witkoskie
  • Shilong Yang
  • Jianshu Cao
چکیده

The motion of Brownian test particles in a model random potential with time dependent correlations is investigated using four methods: renormalized perturbation, perturbation using Martin, Siggia, and Rose functional formalism (MSR), the Edwards variational method on the MSR functional, and renormalization group with the MSR function. The disorder averaged one-particle propagators determined by the renormalized perturbation expansion and MSR perturbation expansion are identical to the second and possibly higher order, and the two-particle propagators determined by these perturbation methods are identical at the first and possibly higher order. The one-particle propagator determined by the Edwards method is identical to the perturbation expansions at the first order, but the second-order analogue of the Edwards method has a more complex expression, which reduces to the second-order perturbation expression with additional higher-order terms. The diffusion constant and two-particle correlations are calculated from these propagators and are used to determine the effects of the random potential on the Brownian particles. Generally, the diffusion rate decreases with the disorder strength and increases with the temporal decay rate. The two competing mechanisms result in an enhancement of the diffusion constant for weak potentials with fast temporal fluctuations. The system exhibits two-particle correlations that are inherently non-Gaussian and indicate clustering behavior. The diffusion constant is also determined from a simple one-loop renormalization group calculation. In the static limit, the diffusion constant calculated by the renormalization group recovers the results of Deem and Chandler [M.W. Deem and D. Chandler, J. Stat. Phys. 76, 911 (1994)].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Brownian Motion of CuO-Water Nanofluid in a Porous Cavity with Internal Heat Generation by Using of LTNE Model

In this paper, the effect of the Brownian term in natural convection of CuO-Water nanofluid inside a partially filled porous cavity, with internal heat generation has been studied. It is assumed that the viscosity and thermal conductivity of nanofluid consists of a static part and a Brownian part of which is a function of temperature and the volume fraction of nanofluid. Because of internal hea...

متن کامل

CFD simulations on natural convection heat transfer of alumina-water nanofluid with Brownian motion effect in a 3-D enclosure

The CFD simulation has been undertaken concerning natural convection heat transfer of a nanofluid in vertical square enclosure, whose dimension, width height length (mm), is 40 40 90, respectively. The nanofluid used in the present study is -water with various volumetric fractions of the alumina nanoparticles ranging from 0-3%. The Rayleigh number is . Fluent v6.3 is used to simulate nanofluid ...

متن کامل

Effects of Brownian motion and Thermophoresis on MHD Mixed Convection Stagnation-point Flow of a Nanofluid Toward a Stretching Vertical Sheet in Porous Medium

This article deals with the study of the two-dimensional mixed convection magnetohydrodynamic (MHD) boundary layer of stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis in the presence of thermal radiation. The skin-friction coefficient, Nusselt number an...

متن کامل

Mixed convection on radiative unsteady Casson ferrofluid flow due to cone with Brownian motion and thermophoresis: A numerical study

In this study, the Brownian motion and thermophoresis effects on the MHD ferrofluid flow over a cone with thermal radiation were discussed. Kerosene with the magnetic nanoparticles (Fe3O4) was considered. A set of transformed governing nonlinear coupled ordinary differential equations were solved numerically using Runge-Kutta based shooting technique. A simulation was performed by mixing ferrou...

متن کامل

particles in random media

We study the behaviour of two Brownian particles coupled by an elastic harmonic force in a quenched disordered medium. We found that to first order in disorder strength, the relative motion weakens (with respect to the reference state of a Brownian particle with the double mass) the effect of the quenched forces on the centre of mass motion of the Brownian particles, so that the motion will bec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 66 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002